Expression of Nitric Oxide-Transporting Aquaporin-1 Is Controlled by KLF2 and Marks Non-Activated Endothelium In Vivo

نویسندگان

  • Ruud D. Fontijn
  • Oscar L. Volger
  • Tineke C. van der Pouw-Kraan
  • Anuradha Doddaballapur
  • Thomas Leyen
  • Josefien M. Baggen
  • Reinier A. Boon
  • Anton J. G. Horrevoets
  • Esther Lutgens
چکیده

The flow-responsive transcription factor Krüppel-like factor 2 (KLF2) maintains an anti-coagulant, anti-inflammatory endothelium with sufficient nitric oxide (NO)-bioavailability. In this study, we aimed to explore, both in vitro and in human vascular tissue, expression of the NO-transporting transmembrane pore aquaporin-1 (AQP1) and its regulation by atheroprotective KLF2 and atherogenic inflammatory stimuli. In silico analysis of gene expression profiles from studies that assessed the effects of KLF2 overexpression in vitro and atherosclerosis in vivo on endothelial cells, identifies AQP1 as KLF2 downstream gene with elevated expression in the plaque-free vessel wall. Biomechanical and pharmaceutical induction of KLF2 in vitro is accompanied by induction of AQP1. Chromosome immunoprecipitation (CHIP) confirms binding of KLF2 to the AQP1 promoter. Inflammatory stimulation of endothelial cells leads to repression of AQP1 transcription, which is restrained by KLF2 overexpression. Immunohistochemistry reveals expression of aquaporin-1 in non-activated endothelium overlying macrophage-poor intimae, irrespective whether these intimae are characterized as being plaque-free or as containing advanced plaque. We conclude that AQP1 expression is subject to KLF2-mediated positive regulation by atheroprotective shear stress and is downregulated under inflammatory conditions both in vitro and in vivo. Thus, endothelial expression of AQP1 characterizes the atheroprotected, non-inflamed vessel wall. Our data provide support for a continuous role of KLF2 in stabilizing the vessel wall via co-temporal expression of eNOS and AQP1 both preceding and during the pathogenesis of atherosclerosis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nitric oxide and the bioactivities

Nitric oxide (NO), previously known as Endothelium-Derived Relaxing Factor (EDRF) is involved in a wide range of physiological and pathophysiological mechanisms. It is synthesized endogenously by the enzymes Nitric Oxide Synthase (NOS) in specialized tissues from its precursor L-arginine, yielding L-citrulline as a byproduct. It is released by a family of isoenzymes, viz., the endothelial (eNOS...

متن کامل

Nitric oxide and the bioactivities

Nitric oxide (NO), previously known as Endothelium-Derived Relaxing Factor (EDRF) is involved in a wide range of physiological and pathophysiological mechanisms. It is synthesized endogenously by the enzymes Nitric Oxide Synthase (NOS) in specialized tissues from its precursor L-arginine, yielding L-citrulline as a byproduct. It is released by a family of isoenzymes, viz., the endothelial (eNOS...

متن کامل

Crippling of Krüppel (-like factor 2) by bad flow portends a miRky day for endothelial function.

Krüppel-like Factor 2 (KLF2) is a 38-kDa transcription factor that is highly expressed in the vascular endothelium. The enormous attention that KLF2 has received in recent years is well deserved, because experimental evidence has shown that it is a vital protein that, via transcriptional and nontranscriptional targets, mediates a host of endothelial functions.1 These include inhibition of vascu...

متن کامل

KLF2 provokes a gene expression pattern that establishes functional quiescent differentiation of the endothelium.

The flow-responsive transcription factor KLF2 is acquiring a leading role in the regulation of endothelial cell gene expression. A genome-wide microarray expression profiling is described employing lentivirus-mediated, 7-day overexpression of human KLF2 at levels observed under prolonged flow. KLF2 is not involved in lineage typing, as 42 endothelial-specific markers were unaffected. Rather, KL...

متن کامل

Site-specific microRNA-92a regulation of Kruppel-like factors 4 and 2 in atherosusceptible endothelium.

OBJECTIVE Endothelial transcription factors Krüppel-like factor 4 (KLF4) and KLF2 are implicated in protection against atherogenesis. Steady-state microRNA (miR) regulation of KLFs in vivo is accessible by screening region-specific endothelial miRs and their targets. METHODS AND RESULTS A subset of differentially expressed endothelial miRs was identified in atherosusceptible versus protected ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2015